
Clar Sextet Analysis of Triangular,
Rectangular, and Honeycomb Graphene
Antidot Lattices
René Petersen,† Thomas Garm Pedersen,†,* and Antti-Pekka Jauho‡,§

†Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg East, Denmark, , ‡Department of Micro- and Nanotechnology, Technical University of
Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark, and §Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 AALTO, Finland

G
raphene, a one atom thick layer of
carbon, has attracted a great deal
of attention since its discovery in

2004.1 This is due to its intriguing proper-
ties such as extremely high conductivity,2

high mechanical strength,3 and the ability
to probe relativistic phenomena at sublight
speeds.4 Owing to the large conductivity
and the atomic layer thickness, graphene is
a promising candidate as a substitute for
the present principal component of most
semiconductor devices, silicon. Natural
graphene, however, is a semimetal and
thus lacks a band gap which is a necessary
condition for its usage in transistor architec-
tures.4 Introducing a band gap into
graphene can be achieved by various
means and several approaches have been
suggested. For example, slicing graphene
into graphene nanoribbons5 or growing
graphene epitaxially on a substrate opens
up a band gap in graphene.6

Recently however, another approach to
opening up a gap in graphene has been
suggested. Calculations7�13 show that by
making a triangular array of holes in the
graphene layer a band gap is obtained and
the size of the gap can be tuned by varying
the parameters of the lattice, that is, the lat-
tice geometry, the hole size, and the hole
separation. Several recent theoretical ar-
ticles have explored various aspects of
graphene antidot lattices, for example,
electron�phonon coupling,14,15 detection
of edge states,16 or details of band gap
scaling.17,18 Graphene antidot lattices have
also been subject to recent experimental re-
search, and antidot lattices of various ge-
ometries have been fabricated using a num-
ber of different techniques.12,19�22

In earlier work triangular antidot lattices
have been treated in detail,7�11,13 and it was
found that the size of the band gap is di-

rectly linked to the size of the hole com-
pared to the size of the unit cell: the larger
the holeis, the larger is the band gap. To
make a thorough analysis, one must con-
sider other lattice geometries as well in or-
der to assess whether other geometries
might be suited for the actual production
of graphene antidot lattices, and also to de-
termine how sensitive the lattices are to
small structural variations. Indeed,
graphene antidot lattices produced by
lithography19 and block copolymer masks20

will be subject to some uncontrollable
variations in the lattice and thus it is impor-
tant to examine how large an effect these
variations may have.

ANTIDOT LATTICE GEOMETRIES
We consider four different lattice types:

the triangular lattice, the rotated triangular
lattice, the rectangular lattice, and the honey-
comb lattice. In the following, R is always the
radius of the hole given in units of the
graphene lattice constant a0 � 2.46 Å.
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ABSTRACT Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer

scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by

adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry, and the separation

of the holes are parameters that all play an important role in determining the size of the band gap, which, for

technological applications, should be at least of the order of tenths of an eV. We investigate four different hole

configurations: the rectangular, the triangular, the rotated triangular, and the honeycomb lattice. It is found that

the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a

sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is

explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of

sextets exceeds one-third of the total number of hexagons in the unit cell. Furthermore, we investigate

nonisosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in

geometry.
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Triangular. The holes are oriented in a triangular ge-
ometry and the unit cell is denoted as {L,R} where L is
the number of nonshared (belonging to only a single
unit cell) hexagons on the edge of the unit cell. This is il-
lustrated in the upper left part of Figure 1 where a
{3,1} unit cell is shown. The numbering in the figure
shows the three nonshared hexagons. In these geom-
etries, the elementary antidot lattice vectors are paral-
lel to the carbon�carbon bonds.

Rotated Triangular. The holes are oriented as in the tri-
angular geometry but rotated 30°. The unit cell is de-
noted as {L,R} where L is the number of nonshared hexa-
gons on the edge of the unit cell. This is illustrated in
the upper right part of Figure 1 where a {5,1} unit cell
is shown. The elementary antidot lattice vectors are ro-
tated 30° with respect to the carbon�carbon bonds.

Rectangular. The holes are located on the
corners of a rectangle. The unit cell in this ge-
ometry is denoted by {Lx,Ly,R} where Lx is the
number of nonshared horizontal hexagons
and Ly is the number of nonshared vertical
hexagons in the unit cell. Hence, Lx must be
odd to keep the unit cell strictly rectangular.
This geometry is illustrated in the lower left
part of Figure 1 for a {5,5,1} lattice.

Honeycomb. The holes are placed such that
they form a honeycomb lattice similar to that
of the carbon atoms in a graphene sheet. The
unit cell in this geometry is denoted by {L,R}
where L is the number of nonshared hexagons
on the edge of the unit cell. A {6,1} unit cell is
shown in the lower right part of Figure 1. The
center-to-center distance between the holes
should be (L � 1)a0/�3 and the vector be-

tween the holes should be at an angle of 30°
relative to the zigzag direction of the graphene
sheet for the holes to form a honeycomb lat-
tice. If the first hole is placed such that the cen-
ter is exactly in the middle of a hexagon it will
not always be such that the center of the sec-
ond hole, when placed according to the pre-
scriptions above, is also in the middle of a hexa-
gon. This might cause the holes to be
nonsimilar with respect to the edge of the
holes. It turns out that only for unit cells obey-
ing L � 3n � 2 (with n an integer) can two simi-
lar holes be placed according to the above pre-
scriptions. For the rest, one of the holes must
be displaced slightly to make sure that the cen-
ter of both holes is in the middle of a hexa-
gon, thereby ensuring that the two holes are
similar. The nonperfect honeycomb lattices dif-
fer from the other lattices by their reduced sym-
metry of the unit cell. Thus, one should be care-
ful when calculating band structures because
the irreducible Brillouin zone is larger than for
the other geometries.

The selection of structures mentioned above is mo-

tivated by recent experimental work. Honeycomb lat-

tices have been produced by patterned hydrogen ad-

sorption,12 rectangular lattices have been produced

using lithography,19 triangular lattices have been pro-

duced using block copolymer methods,20,22 and rotated

triangular structures have been produced using a

method based on surface-assisted coupling of de-

signed molecular building blocks in ref 21. The fact

that “‘hypothetical”’ structures are studied experimen-

tally emphasizes the need for theoretical investigations

to guide the experimental work and possibly the fabri-

cation of devices based on graphene antidot lattices.

To examine the structures we will calculate band

structures of the lattices and analyze their Clar struc-

Figure 1. Unit cells of the four types of geometries studied in this paper. (Up-
per left, UL) {3,1} triangular lattice; (upper right, UR) {5,1} rotated triangular lat-
tice; (lower left, LL) {5,5,1} rectangular lattice; (lower right, RL) {6,1} honeycomb
lattice. Note that the graphene sheet is rotated 90° in the UL and LR illustration.
The numbering in each unit cell shows the nonshared hexagons defining the
lattices.

Figure 2. Band structure of the triangular antidot lattices {5,1}, {6,1},
and {7,1}. A band gap is present for all structures and it is always lo-
cated at the � point of the Brillouin zone.
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ture, that is, the pattern of delocalized �-orbital phenyl
ring structures, namely, Clar sextets.23 Clar analysis has
previously been used with success to explain the oscil-
lating behavior of the band gap in graphene nano-
ribbons24 and the stability and band gap of carbon
nanotubes.25 Very recently, we gave a preliminary dis-
cussion of the lattice-dependence of band gaps in rect-
angular graphene antidot lattices.26 The Clar structure
of a given unit cell of a lattice is determined by locat-
ing the pattern of sextets, which gives the maximum
number of sextets in the unit cell. The sextets cannot
be distributed freely within the unit cell due to two limi-
tations: The Clar representation has to preserve the
unit cell (if it failed to do so, it would not, by definition,
be a unit cell) and two sextets cannot be neighbors.
Neighboring sextets are nonchemical since they would
require carbon atoms with more than four bonds. In
most cases it is straightforward to determine the Clar
structure while in others it is more involved due to lack

of symmetry. In those cases we have calcu-
lated the bond order to aid in finding the op-
timal Clar structure. Here it should be noted
that in many cases the Clar structure is not
unique. For many structures several different
Clar structures yield the same total number of
sextets. Thus, when calculating the bond or-
der one will find a superposition of all the dis-
tinct Clar structures. This is not crucial, be-
cause, as it will be explained later, what really
matters for our purpose is the number of
sextets.

RESULTS AND DISCUSSION
The results of the band structure calcula-

tions of the NN-TB model are shown in Figure
2�Figure 5. Figure 2 shows the band structure
of three triangular antidot lattices differing in
the unit cell size, that is, the separation be-
tween the holes. As shown previously7,8 trian-
gular antidot lattices show a band gap for all
tested configurations and the band gap Eg is
proportional to the ratio between the number
of atoms removed to form the hole and the to-
tal number of atoms in the unit cell before
the hole is formed: Eg � Nremoved

1/2 /Ntotal.7,8 To il-
lustrate the fact that the band gap simply de-
creases monotonously with unit cell size for a
fixed hole, we have considered {5,1}, {6,1}, and
{7,1} triangular lattices. As clearly observed in
Figure 2, all the chosen structures have large
band gaps and the band gap is always located
at the � point of the Brillouin zone. Indeed, it
is observed that the band gap decreases as
the ratio between the hole size and unit cell
size decreases, that is, as the ratio Nremoved

1/2 /
Ntotal decreases.

The story is different for other geometries,

as demonstrated by Figure 3, which gives the

Figure 3. Band structure of the rotated triangular structures {4,1}, {5,1},
and {6,1}. Only one of the structures shown possesses a band gap
while the others resemble the behavior of intact graphene near the K
point.

Figure 4. Band structure of the rectangular lattice structures {7,8,2},
{7,9,2}, and {7,10,2}. Only one of the structures shown possesses a band
gap while the others resemble the behavior of intact graphene.

Figure 5. Band structure of the honeycomb lattices {5,1}, {6,1}, and
{7,1}. A band gap is only present for one of the shown structures.
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band structures for the rotated triangular lattices. No

band gap is observed for the structures {4,1} and {6,1},

and around the K point the bands resemble the bands

of pristine graphene: no gap is observed and the bands

are linear in the proximity of the K point. As we shall dis-

cuss below, for general structures of the type {L,R} only

every third value of L leads to a substantial band gap.

When analyzing the band structures of rectangular

and honeycomb/near-honeycomb (because the lattice

is disrupted to make the holes similar) antidot lattice,s

the picture is similar to the rotated triangular lattices.

For the three rectangular lattices shown in Figure 4 all

structures have a finite band gap but only {7,8,2} pre-

sents a large band gap, while {7,9,2} and {7,10,2} have

significantly smaller band gaps. For the three honey-

comb lattices in Figure 5 only {5,1} presents a large gap.

These findings strongly suggest that some connection

should exist between certain general characteristics of

the lattice and the appearance of a large band gap. It

should be pointed out that the band gap is not exactly

zero for any of the shown structures but it is indeed very

small in magnitude (on the order of few meV).

To explain the presence of a large band gap for cer-

tain structures and the lack of a band gap for other

structures we suggest that one should analyze the Clar

representation of the unit cell. By doing this one finds

that not all of the structures support a complete ben-
zenoid pattern because the Clar sextets cannot be dis-
tributed freely across the unit cell. The Clar representa-
tion of the triangular lattice is particularly simple
because it always allows for a complete benzenoid
structure just like in pristine graphene. In other words,
the introduction of the holes does not disturb the struc-
ture of the resonant double bonds and thus the reso-
nant structure remains the same as in pristine
graphene. The only exception to this rule is related to
the double bonds around the hole which, depending
on the radius of the hole, may not be allowed to main-
tain their chemical structure. Figure 6 shows the Clar
structure of two unit cells belonging to the triangular
lattice, {3,1} and {4,1}. Both structures support the com-
plete benzenoid pattern. According to Clar sextet
theory24 fully benzenoid structures have higher stabil-
ity than structures for which a fully benzenoid bonding
pattern is not possible. Thus, one can expect triangular
lattices to be more stable than other geometries.

For the other lattice types a complete benzenoid
pattern is not always a possibility. This becomes evi-
dent by studying Figure 7�Figure 9. From these fig-
ures one can also see that the 3-periodic patterns found
for the band gaps are replicated in the Clar patterns of
the structures. Thus, only those structures, which have a
fully benzenoid pattern lead to a large band gap while
the other structures either present a gap that is signifi-
cantly smaller (for the rectangular lattices a reduction of
a factor 5 is seen) or practically zero. By combining the
calculations of the band structures with the Clar repre-
sentations of the unit cells we may deduce a set of
semiempirical rules for the occurrence of a large band
gap; these rules are summarized in the Table 1. Thus,
the structures with significant band gaps constitute
only one-third of the total number of structures within
these last three classes of lattices. These findings are
based on the NN-TB model but we have replicated the

same patterns in the QT-TB model in order to
verify that the conclusions drawn are not
based on artifacts of an oversimplified model.

The possibility of making a complete ben-
zenoid pattern of Clar sextets in graphene an-
tidot lattices, ignoring the disruption of the
Clar structure by the hole, seems to be a crite-
rion for the appearance of a large band gap.
Evidently, all triangular antidot lattices do pos-
sess a band gap and they all support a com-
plete benzenoid pattern of sextets. On the
contrary, for the other lattices, only a minority
of all structures support a complete ben-
zenoid pattern and consequently possess a
large band gap. For hole sizes of R � 1 it seems
that the band gap is either large or close to
zero. To extend our conclusions to larger (and
more realistic) geometries, we have tested a
large number of rotated triangular lattices as

Figure 6. Clar structure of the triangular lattice. Here it is clear
that all lattices support a complete benzenoid structure for a
hole of radius a0.

Figure 7. Clar structure of the triangular rotated lattice. As it is seen, a
complete benzenoid pattern is not possible for all structures. The hole
radius is a0 in all cases.
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a function of the hole size R � 1..7 and the lattice spac-
ing L � 5..20 (see Figure 10). We always find that the
prediction of the Clar sextet theory holds: as a function
of L only every third structure has a sizable gap. The size
of the gap always decreases as L is increased; however,
the quantitative details depend on the value of R, and
are thus beyond the qualitative statements that can be
deduced from the Clar theory. Moreover, in ref 26, we
have verified Clar theory for R � 2 rectangular lattices.
In general, our calculations indicate that a criterion for a
large band gap is the existence of a complete ben-
zenoid Clar pattern. In an attempt to find a simple rule
for the existence of a large band gap we counted the
number of sextets in the unit cells and related it to the
total number of hexagons in the cell. We found that, for
those structures having a large band gap, the number
of sextets in the unit cell was larger than one-third of
the total number of hexagons in the unit cell, NSx �
1/3NHx.

From these findings we conclude that the nonro-
tated triangular lattice holds the most potential for the
actual production of graphene antidot lattice of techno-
logical importance, since a band gap is found in all
cases. Thus, it is interesting to study the stability of this
structure under small geometric distortions. Here we
will consider a nonisosceles triangular lattice as shown
in Figure 11. All unit cells are effectively elongated in
the y-direction and the deviation from the triangular
case is denoted with the parameter D, which expresses
how much the vertical distance between the holes is
larger than in the triangular case. D is measured in units
of a0 and a lattice of the nonisosceles triangular type is
denoted as {L,D,R} where L retains its original meaning.
The elongation of the unit cell in the y-direction dis-
turbs the previously complete benzenoid structure, and
one could suspect that a similar 3-fold repetitive pat-
tern as those seen for other types of structures should
be seen. Indeed, if one analyzes the Clar pattern it is
found that every third structure, those with D � 3n, sup-
port a complete benzenoid Clar structure. Looking at
Table 2 one can see that these structures are exactly
those which also possess a band gap in accordance
with the findings for other structures.

Thus, as a guide to experimental fabrication of large-
gap antidot lattices we stress the following points: First,
triangular lattices are favorable due to their insensitiv-
ity to the precise lattice constant. It is essential, how-
ever, that the elementary lattice vectors connecting
neighboring holes are aligned along the
carbon�carbon bonds. Also, it is important to main-
tain 6-fold rotational symmetry as demonstrated by the
analysis of nonisosceles lattices. In practice, orientation
of the antidot lattice relative to the graphene lattice re-
quires knowledge of the latter. This may be obtained
by electron diffraction,27 transmission electron
microscopy,28 or polarized Raman spectroscopy.29 Con-
trolling the orientation of the lattice should be feasible

Figure 8. Clar structure of the rectangular lattice. As it is seen, a complete
benzenoid pattern is not possible for all structures. The hole radius is a0 in
all cases.

Figure 9. Clar structure of the honeycomb lattice. As it is seen, a complete
benzenoid pattern is not possible for all structures. The hole radius is a0 in
all cases.

TABLE 1. Empirical Rules Governing the Occurrence of a
Large Band Gap. n is a Non-negative Integer

structure large band gap

triangular no restrictions
rotated triangular L � 3n � 2
rectangular Ly � 3n � 2
honeycomb L � 3n � 2

Figure 10. Band gaps of {L,R} rotated triangular antidot lat-
tices. The R values are indicated next to each data point.
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with lithography19 but probably challenging with the
block copolymer technique.20 Alternatively, chemical

self-assembly from suitable precursors can be applied

to ensure a particular lattice geometry.21

CONCLUSION
Our results show that it is possible, without turning

to full-scale atomistic calculations, to predict if a given

graphene antidot structure can be expected to possess

a large band gap only by analyzing the Clar structure

of the unit cell. Structures investigated in this work

show a large band gap only if the lattice allows for a

complete benzenoid pattern with the number of sex-

tets exceeding one-third of the total number of hexa-

gons in the unit cell. Four different lattice types were in-

vestigated. We found that only nonrotated triangular

lattices, in which antidot lattice vectors are parallel to

atomic bonds, are insensitive to lattice constants and al-

ways exhibit a band gap. All other lattices (rotated tri-

angular, rectangular, and honeycomb) are extremely

sensitive to the lattice geometry and only one-third dis-

play large band gaps. Finally, nonisosceles triangular

lattices show the same 3-fold repetitive pattern with re-

spect to the band gap.

METHODS
In the present work, band structures of antidot lattices are

calculated in a simple nearest neighbor tight binding model
(NN-TB) as well as the quasi-particle tight binding (QP-TB) model8

based on the parametrization of the quasi-particle band struc-
ture of graphene.30 In the NN-TB model the hopping integral be-
tween neighbor atoms is given by 	 � 3.033 eV31 and overlap
is neglected. In the QP-TB model the parameters are used as
given in ref 30 and three nearest neighbors and overlaps are in-
cluded in the calculations.

In certain cases, the Clar structure is difficult to identify and
for this purpose the bond order (BO) pattern has been exam-
ined. In graphene and related structures one can calculate the
BO between two bound atoms by calculating the overlap be-
tween the � -electrons of the two atoms. This gives information
about the probability of finding a double bond between those
two atoms. The BO between atom p and p= (neighboring atoms)
is calculated as follows:

Here, cv
p is the expansion coefficient of valence band state v in

the basis of � -orbitals labeled by their site p, and the sums are
taken over all valence band states v,v=. In the present case, this
entails a summation over k-points in the irreducible Brillouin
zone as well as band index. A large BO is indicative of double-
bond character and the BO pattern is therefore helpful in identi-
fying the Clar pattern. We do not explicitly show the obtained
BO patterns but merely ensure their agreement with all pre-
sented Clar structures.
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